Relation Algebras, Idempotent Semirings and Generalized Bunched Implication Algebras
نویسنده
چکیده
This paper investigates connections between algebraic structures that are common in theoretical computer science and algebraic logic. Idempotent semirings are the basis of Kleene algebras, relation algebras, residuated lattices and bunched implication algebras. Extending a result of Chajda and Länger, we show that involutive residuated lattices are determined by a pair of dually isomorphic idempotent semirings on the same set, and this result also applies to relation algebras. Generalized bunched implication algebras (GBI-algebras for short) are residuated lattices expanded with a Heyting implication. We construct bounded cyclic involutive GBI-algebras from so-called weakening relations, and prove that the class of weakening relation algebras is not finitely axiomatizable. These algebras play a role similar to representable relation algebras, and we identify a finitely-based variety of cyclic involutive GBI-algebras that includes all weakening relation algebras. We also show that algebras of down-closed sets of partially-ordered groupoids are bounded cyclic involutive GBI-algebras.
منابع مشابه
The Composition, Convergence and Transitivity of Powers and Adjoint of Generalized Fuzzy Matrices
Path algebras are additively idempotent semirings and generalize Boolean algebras, fuzzy algebras, distributive lattices and inclines. Thus the Boolean matrices, the fuzzy matrices, the lattice matrices and the incline matrices are prototypical examples of matrices over path algebras. In this paper, generalized fuzzy matrices are considered as matrices over path algebras. Compositions of genera...
متن کاملPeter Jipsen From Semirings to Residuated Kleene Lattices
We consider various classes of algebras obtained by expanding idempotent semirings with meet, residuals and Kleene-∗. An investigation of congruence properties (epermutability, e-regularity, congruence distributivity) is followed by a section on algebraic Gentzen systems for proving inequalities in idempotent semirings, in residuated lattices, and in (residuated) Kleene lattices (with cut). Fin...
متن کاملDistributive residuated frames and generalized bunched implication algebras
We show that all extensions of the (non-associative) Gentzen system for distributive full Lambek calculus by simple structural rules have the cut elimination property. Also, extensions by such rules that do not increase complexity have the finite model property, hence many subvarieties of the variety of distributive residuated lattices have decidable equational theories. For some other extensio...
متن کاملAn Algebraic Glimpse at Bunched Implications and Separation Logic
We overview the logic of Bunched Implications (BI) and Separation Logic (SL) from a perspective inspired by Hiroakira Ono’s algebraic approach to substructural logics. We propose generalized BI algebras (GBI-algebras) as a common framework for algebras arising via “declarative resource reading”, intuitionistic generalizations of relation algebras and arrow logics and the distributive Lambek cal...
متن کاملAlgebraic Notions of Termination
Five algebraic notions of termination are formalised, analysed and compared: wellfoundedness or Noetherity, Löb’s formula, absence of infinite iteration, absence of divergence and normalisation. The study is based on modal semirings, which are additively idempotent semirings with forward and backward modal operators. To model infinite behaviours, idempotent semirings are extended to divergence ...
متن کامل